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BROOKHPVEN Overview

 Introduction to muon accelerators
« Beam dynamics requirements
« Target analysis



sromennven  |Ntroduction to Muon Accelerators iy

« High-power target
0 Generally at least 1 MW of protons on target, often talk of 4 MW
0 Different types of targets proposed
0 Liguid mercury (Wood'’s metal) jet
0 High velocity
0 In magnetic field
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0 Solid stationary targets
0 Moving solid targets
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« Phase rotation

0 Large energy spread coming from targe60%
0 Must be reduced to about25% for downstream systems
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« lonization cooling
0 Reduction of transverse (and sometimes longituindal)tance
0 Requires beam to pass through material, RF to restore lesfjgn
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o Acceleration

0 May use Fixed Field Alternating Gradient Accelerators (FEBAG
0 Magnets don’t ramp, have factor of 2 or more in energy in samme ar

« Storage ring
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« Beamlines must accept large energy spreads
0 After target: KE from almost O to 300 MeV or more
0 In cooling: £25%
0 In acceleration: FFAGs have single beamline with a factdt of
more in energy

o Large transverse emittances

0 Typically the beam pipe is at 253
0 In cooling: maximum angles are around 0.1-0.2 rad
0 Needed to keep multiple scattering under control

« Magnets are not separate, constant-field objects

0 Fields of adjacent magnets overlap
0 Fields are far from constant

0 Magnets are short compared to their apertures
0 End fields are a significant contribution to the dynamics
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[BROOKHRAEN Field Profile: Cooling Cell
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[BROOKHRUEN Field Profile: FFAG Cell 5y

Muon Collaboration
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BRODKHRUEN Requirements for Lattice Codes iy

« Correctly handle huge energy spreads, beam sizes
0 Don’t approximate Hamiltonian!

0 Truncated power series present problems

0 Feed-down prevents composition of maps
0 Usually work fine for short magnets, cells

« Correctly handle non-constant fields

0 Longitudinal field variation leads to higher-order fieldsrfr
Maxwell's equations

0 Model ends of magnets
« Separate coordinate system geometry from fields
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BROOKHRAEN 10-cell FFAG Lattice
Power Series Feed-Down
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Muon Collaboration
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BROOKHAUEN, Analysis and Tracking My

« Analysis codes:

0 Often have trouble with large energy ranges

0 Need to take into account cooling and multiple scatteringpime
averaged sense

0 Don’t always match tracking (different models)
0 Need to be able to optimize rather arbitrary quantities

« Tracking codes:

0 Field computations are often slow: complex field model
0 Need many particles to compare designs accurately (poiustsis)

« Subroutine/class libraries may be more useful that mdmolttacking
codes

0 We want non-standard guantities
0 Our systems often are not described in terms of standardealsm
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smoainven  Particle Creation/Energy Deposition 4,

« Need to be able to compute

0 Produced particle spectrum, including energy and angpketsum

0 Total number important for preducting performance, prqiower
requirements
0 Spectrum needed for design of muon transport systems

0 Energy deposition in materials

0 Needed for design of cooling systems
o0 Irradiation of materials: lifetime, degradation of projpes, radiation
protection

« Several codes which do this (MARS, FLUKA, MCNPX, ...)
0 Significant disagreements in some cases (30%7?)
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[BRODKHAUEN Solid Targets iy

 Solid targets frequently break: need to predict this bedravi

o Causes

0 Shock waves from beam hitting target

0 We think we can model this fairly well
0 Need accurate computation of energy deposition

0 Degradation of material properties under irradiation
0 This we don’t understand well at this point
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BROOKHRVEN Coef. of Thermal Expansion vs.
Irradiation
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BROOKHAVEN Liquid Jet Targets iy

« Need to predict evolution of target
o WIll the target be stable enough to hit? Need to be able taydasi
o WIll the target be there for the next pulse?
0 Will the jet interfere with particle transport (this or nextlse)?
0 How does the jet evolve in a varying magnetic field?

« Codes exist (e.g., FRONTIER) which solve for evolution afface
0 Cavitation caused by energy deposition and turbulencepsitant
0 Need model for cavitation sources!

0 Two models for cavitation in code

0 Individual bubbles: only realistic in 2-D (3-D wouulde bea)
0 “Bubbly fluid” equation of state
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BRODIHAVEN Mercury Target 5y
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Individual Bubbles and EOS Model




BROOKHRUEN Cavity Breakdown iy

« WWe need to run cavities at high gradients, epecially foriogol
« Need to predict/prevent breakdown
« Good models are lacking at this point
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[BROOKHAVEN Concluding Comments iy

« Large beam sizes in muon accelerators require codes thedaatl to
do things correctly over large ranges of phase space vasabl

« Target design requires a greater understanding of the ggwsthe
targets and incorporation of that into predictive desigteso
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